
ELSEVIER 

Available online at www.sciencedirect.com 

S C I E N C E @ D I R E C T  o A P P L I E D  
M A T H E M A T I C S  

A N D  MECHANICS 
www.elsevier.com/locate/jappmathmech 

Journat of Applied Mathematics and Mechanics 68 (2004) 503-510 

OPTIMAL CONTROL FOR A CLASS OF SYSTEMS 
SUBJECTED TO DISTURBANCESt 

F. L. C H E R N O U S ' K O  

Moscow 

e-mail: chern@ipmnet.ru 

(Received 29 December 2003) 

A special class of linear dynamical systems acted upon by controls and bounded disturbances is considered. It is assumed that 
the disturbances are due to an error in the control implementation; there are no disturbances in the case of the zero control, 
but the range of the disturbances increases with the control intensity. The problem of constructing a control which provides a 
minimax to a specified optimality criterion for an arbitrary permissible form o¢ the disturbances is formulated. The solution of 
the minimax problem is reduced to the solution of transcendental equations. Under certain conditions the solution is obtained 
in explicit form. An example is considered in which the optimal control is constructed both in the form of a program and in the 
form of a synthesis. © 2004 Elsevier Ltd. All rights reserved. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

Many controlled dynamical systems are described by the following system of differential equations 

ai = f ( x ,  u, ~, t) (1.1) 

Here x(t)  is an n-dimensional vector of the phase coordinates, t is the time, u(t) is an m-dimensional 
vector of the controlling forces, x)(t) is a k-dimensional vector of the disturbances a n d f  is a specified 
function of its arguments. Systems of the form (1.1) have been investigated in the differential game 
theory [1]. The disturbance v(t) can be interpreted as an action of an adversary (the second player), 
as an uncontrolled external disturbance, and also as an error in the implementation of the control x~(t). 
The latter case arises if the specified control force (for example, the thrust of an engine) differs from 
nominal one. In this case the intensity of the possible disturbance v(t) depends on the value of the control 
force u(t) and increases as the latter increases. 

The problem considered in this paper simulates the situation described above, in which the value of 
the possible uncontrolled disturbance is due to the error in the control implementation and increases 
as the value of the control increases. The constraints imposed and the optimality criterion are chosen 
in such a way that the problem has a solution. 

We will now give a formal statement of the problem. 
Consider a linear controlled system of the form 

Yc = A ( t ) x  + B( t )u  + C(t)  o + g( t )  (1.2) 

in a specified time interval t ~ [to, T]. Here x, u and ~ have the same meaning as in system (1.1), A(t), 
B(t)  and C(t) are specified matrix functions of time of dimension n ×  n, n × m and n × k respectively, 
and g(t) is a specified n-dimensional vector function of time. A constraint of the following form is imposed 
on the disturbance a3(t). 

(G( t )  o(t) ,  o ( t ) ) )  < Ilu(t)ll 4 (1.3) 

Here, G(t)  is a specified symmetric positive-definite k × k matrix function of time, the brackets (-, .) 
denote the scalar product of vectors, and the symbol 1111 denotes the Euclidean norm of the vector. 
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In particular, if G(t) is the identify matrix, condition (1.3) means that the intensity of possible disturbances 
is proportional to the square of the value of the control. 

The initial condition 
0 

X(to) = x (1.4) 

is specified at the initial instant t = to, where x ° is a specified n-dimensional vector. 
The optimality criterion for the control is specified in the form 

T 

J = ~[(a(t), x( t ) )  + b(t)llullE]dt + F ( x ( T ) )  (1.5) 

t o 

Here a(t) is a given n-dimensional vector function of time, b(t) is a given positive scalar function and 
F(x) is a given continuous scalar function of the vector argument. The optimality criterion J includes 
an integral term, linear inx and proportional to the projection of the phase vector onto a given direction, 
a term quadratic in the control u, and also a non-linear terminal term, which can serve as a measure 
of the deviation of the terminal state x (T )  from a specified point. The introduction of this non-linear 
term is an essential extension of the problem statement considered in [2]. All the given functions of 
time, which occur in relations (1.2), (1.3) and (1.5), are piecewise-continuous in the interval t ~ [to, 7]. 

We will formulate the problem of obtaining a control which provides the following minimax to the 
function J from (1.5) 

J* = minmaxJ (1.6) 
u /) 

when relations (1.2)-(1.4) are satisfied. Here the maximum is taken with respect to all the disturbances 
v(t), which satisfy constraint (1.3) under specified control u(t) known  over the whole interval t ~ [to, 
7]. The minimum in (1.6) is taken over all the controls u(t). Here we will construct both an open-loop 
control u(t), corresponding to the "worst" case of the realization of the disturbance v(t) ,  and also a 
control in the closed-loop form (the feedback control) as a function u = u*(x, t) of time and the actual 
state, calculated for the worst future realization of the disturbance. The problem can be treated as a 
problem of the control for an ensemble of trajectories of system (1.2), guaranteed (in the sense of 
optimality criterion (1.6)) for all possible permissible constraints. 

2. T R A N S F O R M A T I O N S  

We will carry out some transformations which simplify the problem. We will denote the fundamental 
matrix of system (1.2) by ~(t). This matrix is defined by the relations 

= A( t )O ,  ~( to)  = E n (2.1) 

where En is the identity n x n matrix. Assuming the fundamental matrix to be known, we will replace 
the phase vector and the disturbance in (1.2) as follows: 

x = ~ ( t ) y ,  O = Uul leD( t )w  (2.2) 

We will choose the square non-degenerate matrixD(t) of dimension k x k in such a way that the following 
identity is satisfied for all t e [to, 7] 

D r G O  = E k (2.3) 

Relation (2.3) means that the transformation of the disturbance in (2.2) should reduce the quadratic 
form (1.3) to the sum of squares. One can take the matrix G -1/2, for example, as D(t).  

After substituting (2.2), system (1.2) takes the form 

= Bl ( t )u  + Ilull2Cl(t)w + gl(t) (2.4) 

We have introduced the following notation here 

Bl( t  ) = o - l ( t ) B ( t ) ,  Cl ( t )  = ~ - l ( t ) C ( t ) D ( t )  
(2.5) 

gl( t )  = ~ - l ( t ) g ( t )  
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Constraint (1.3), taking (2.2) and (2.3) into account, can be converted to the simple form 

]lwl] < 1 (2.6) 

By making the replacement of variables (2.2), we can write the initial condition (1.4) and the optimality 
criterion (1.5) in the form 

0 
Y(to) = x (2.7) 

Here we have put 

T 

J = I[(al(t),  y(t)) + b(t)lluH2]dt + FI(y(T) ) 

to 

(2.8) 

al(t  ) = ~r( t )a( t ) ,  Fl(y ) = F(~(T)y )  (2.9) 

Hence, the initial problem (1.2)-(1.6) reduces to finding the minimax 

J* = minmaxJ (2.10) 
u w 

for system (2.4) with constraint (2.6) on disturbance w, with initial conditions (2.7) and with optimality 
criterion (2.8). Using the maximum principle [3], we determine initially the maximum J with respect 
to w and then the minimum with respect to u. 

3. CONSTRUCTION OF THE SOLUTION 

For the problem of the maximum of functional (2.8) with respect to w, we will set up a Hamilton function 
for system (2.4) with optimality criterion (2.8) 

1-I = (p, Bin) + tlullZ( crp ,  w) ÷ (p, gl) + (al,  Y) + bllull 2 (3.1) 

We write the conjugate system and the transversality condition for the conjugate vectorp(t) 

p = -al ( t ) ,  p(T)  = aFl(y(T)) /ay  (3.2) 

Solving Cauchy problem (3.2) we obtain 

T 

p(t, y(T)) = Ial('c)dx + OFI(y(T)) 
~y 

t 

(3.3) 

The condition for a maximum of Hamiltonian (3.1) with respect to w with constraint (2.6) gives 

w(t) c r p - 1  r = C l p  (3.4) 

Substituting w(t) from (3.4) into system (2.4), we obtain 

Y = Bin+ Ilull 2 crp qclcrp÷gl (3.5) 

We will now consider the problem of the minimum of the functional (2.8) with respect to u for system 
(3.5). The Hamilton function for this optimal-control problem has the form 

H, = (p,, BlU ) + Ilul121 cTp -l(pl, c1CTp) + (Pl, g,) - (al, Y) - bllull z (3.6) 

Herepl is the conjugate vector for the problem considered, which satisfies the following conjugate system 
and transversality condition 

Pl = al(t), Pl(T) = -OF1(y(T))/OY (3.7) 
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Comparing relations (3.7) and (3.2), we find that the following equality holds 

Pl = -p(t, y(r)), t e [to, r l  

The functionp(t, y(T)) is defined by (3.3). 
Substituting (3.8) into the Hamiltonian (3.6), we obtain, after simplifications 

H 1 = - (BTp,  g)  -[[ul12( CTp + b) - (p ,  g~) - ( a  s, y )  

The maximum of the Hamiltonian H1 from (3.9) with respect to u is attained at 

T 
Blp 

u(t) = 2( crp +b) 

(3.8) 

(3.9) 

(3.1o) 

Formulae (3.10) and (3.4) express the optimal open-loop control u(t) and the "worst" disturbance 
w(t) in terms of the specified functions of time and the conjugate vectorp, defined by (3.3) and depen- 
dent, in turn, on the terminal value y(T) of the state vector. Hence, to obtain a solution in final form 
it is necessary to determiney(T) as well. 

We substitute the control u(t) from (3.10) into system (3.5) and integrate it with initial condition (2.7). 
We obtain 

t 

y(t) = x ° + fL(p, "c)d'c (3.11) 
to 

where we have introduced the notation 

L(p ,  t) O l p  2 c I C T p  B I B I P  
= + gl  (3 .12)  

4 crp ( c r p  +b) 2 2( crp +b) 

The dependence of the function L(p, t) on the second argument is due to the dependence of the specified 
function b(t), and also of the functions Bl(t), Cl(t) and gift) on t; the latter functions are defined by 
(2.5). The functionp(t, y(r)) is defined by (3.3). 

Assuming t = T in (3.11) we obtain 

T 

y(T) = x ° + IL(p(t, y(T)), Odt (3.13) 

t0 

Equation (3.13) is a system of n equations for the unknown mdimensional vector y(T). The question 
of the existence and uniqueness of the solution of this system remains open in general. Below we consider 
some special cases in which a unique solution of this equation exists. 

Suppose a unique solutiony(T) of system (3.13) has been obtained. Then, we arrive at the following 
procedure for solving the minimax problem. When the vector y(T) is obtained, the conjugate vector 
p(t, y(r))  is completely defined by (3.3), the optimal open-loop control u(t) and the worst disturbance 
w(t) are specified by Eqs (3.10) and (3.4) respectively, while the state rectory(t) for given u(t) and w(t) 
is defined in the form of quadrature (3.11). The required minimax J* of the functional J is obtained by 
substituting into (2.8) the functions u(t) obtained from (3.10) and y(t) obtained from (3.11) and 
calculating one more quadrature. The phase trajectoryx(t) and the disturbance v(t) in the initial variables 
are found using relations (2.2). 

We have described above a procedure for constructing the optimal programmed control u(t) for given 
initial conditionx(t0) = x ° from (1.4). The control obtained, which depends on the initial data, can be 
represented in the form of the function u = ~(t; to, x°). Similarly, the worst disturbance can be represented 
in the form v = 5(t; to, X°). In order to obtain the optimal feedback control, i.e. in the form of a synthesis, 
we must identify the current instant t and the initial instant to. The resulting functions 

fi(x, t) = ~(t; t, x), ~(x, t) = ~)(t; t, x) (3.14) 

represent, respectively, the required optimal control and the worst disturbance in the form of a synthesis. 
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Note, that if the disturbance differs from the worst one, then, using feedback optimal control ~(x, t), 
we gain an advantage in the functional (compared with its value for the open-loop control), since the 
control employed will be optimal for each actual state considered as the initial state. 

4. T H E  L I N E A R  CASE 

The., simplest solution is obtained if the function F(x) in the formula for functional (1.5) is linear, i.e. 

F(x) = (c,x) (4.1) 

Here c is a given n-dimensional vector. In this case, the conjugate vector considered previously [2] is 
completely defined by (3.3) and is independent ofy(T).  From relations (3.3) and (4.1) we have 

T 

p(t) = c + Ial(x)dx (4.2) 
t 

Sincep(t) is independent ofy(T),  there is no need in this case to solve system (3.13), and all the required 
quantities are found in closed form. The optimal control u(t) and the worst disturbance w(t) are given 
by formulae (3.10) and (3.4) respectively, into which we must substitute p(t) from (4.2). Formula (3.11) 
gives the optimal phase trajectory. In this case the control in the closed-loop form u(t) is identical with 
the open-loop control. In other words, there is no need to recalculate the optimal control at each instant 
of time, since it turns out to be independent of the actual state and, consequently, of the form of the 
disturbance. An example was given in [2], in which the solution for the linear case under consideration 
was presented in an explicit form. 

5. E X A M P L E  

As an example we will consider the problem of controlling a second-order system 

3Cl = X2'  "~2 = U + V (5.1) 

with the initial conditions 
0 0 

X l ( / 0 )  = X 1, XE(t  0)  = X 2 (5.2) 

Here xl is the coordinate of the system, x2 is its velocity, u is the controlling force and a0 is a disturbance, 
which is the error in the control implementation. We will take constraint (1.3) on the disturbance in 
the form 

f vl - ku 2 (5.3) 

where k > 0 is a given constant. 
We will specify the optimality criterion (1.5) in the form 

T 

J = blu2dt + x2,(T) (5.4) 

t0 

where b > 0 is a given constant. Criterion (5.4) includes the resource of the control and the quadratic 
error in bringing the system to zero with respect to the coordinate. 

The fundamental matrix qs(t) of system (5.1), which satisfies conditions (2.1), and the inverse matrix 
to it ~-l(t)  are 

• (t) = ol t - t  ' ~q ( t )  = 01 to-tl (5.5) 

For the example (5.1)-(5.4) considered we have, in the notation of (1.2), (1.3) and (1.5) 

B = C = 0 ,  g = 0,  G = k 2, a = 0,  F(x) = x~ (5 .6)  
1 
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The matrices and vectors D, B1, C1, gl and al, defined by relations (2.3), (2.5), (2.9) and (5.6) and the 
fundamental matrix (5.5), are 

D = k, B!(t) = t ° l t ,  C1 = kB1, gl = al = 0 (5.7) 

Calculating the function FI(y) and its derivatives with respect toy using (2.9), (5.5) and (5.6), we obtain 

OFI(y) 
T 1 to (5.8) Fl(y ) = F(~(T)y)  = y2, OY = 2Y 

where 

Y = y! + ( T -  t0)y 2 (5.9) 

The conjugate vector (3.3), by virtue of the last equality for al in (5.7) and (5.8), turns out to be constant 

p = 2 v ( r )  T 1 _ (5.10) 
to 

We substitute the expressions for Ba, Ca and gx from (5.7) andp  from (5.10) into formula (3.12) for 
L(p,  t). After simplifications and introducing the notation 

rl = Y(T), s = 2k[tllb -l, Z = ( T - t ) s ,  z = (T- to)S  (5.11) 

we will have 

L(p,t)  = t lZ(2+Z)I t - t011  (5.12) 
2bs(1 +Z)  2 -1 

We substitute (5.12) into Eq. (3.13) and evaluate the integral. We obtain 

t ( t -  t0) 2 t - t o  1 ln(1 +Z) 
fLd  -- 2 s(1 +z) ? (5.13) 

1 1 
to t ° - t + s ( l  + Z-------~) s(1 +z) 

We put t = T (and then Z = 0) in (5.13) and substitute the expression obtained into (3.13). We have 

YI(T) = xl + t 1 z212_z+ln(l+z)lJ (5.14) 

Y2(T) x 2 2bs3 -sz2( 1 + z) -1 

Note that the quantities 1] and s, which occur on the right-hand side of (5.14), are expressed in terms 
of the vector y(T) by means of Eqs (5.9) and (5.11). Hence, Eq. (5.14) represents a system of two 
transcendental equations for the components yl(T) and y2(T) of the vector y(T). 

In order to reduce this system to a single equation we first substitute yl(t) andy2(t) from (5.14) into 
formulae (5.9) and (5.11) for q. By resolving the relation obtained with respect to 11 and introducing 
the notation 

2 

2 + z + z  z-21n(l+z)  (5.15) 
~(z)  - 2z(1 + z) 

we will have 
3 -1 -1 -1 0 0 

rl = [ l + ( T - t  0) (2b) z ~(z)]  [X l+(T- to )x  2] (5.16) 

Taking into account the fact that ~(z) > 0 for all z _ 0, we calculate the modulus of both sides of Eq. 
(5.16) and substitute the expression obtained for I nl into the second and last relations of (5.11). We 
thereby obtain the following equation for z 

z + ( T -  to)3(2b)-l~(z) = 2 k ( T -  t0)b-l~ (5.17) 
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Here we have put 

= x ° + ( r -  to X ° (5.18) 

The function ~(z) strictly increases when z > 0 (see Fig. 1). Hence, the left-hand side of Eq. (5.17) 
is a monotone function, strictly increasing from 0 to oo. Consequently, this equation has unique solution 
z > 0 for all values of the positive parameters T -  to, k, b, ~. 

In the limiting cases of small and large values of ~, using the asymptotic expansions 

~ ( z ) -  2z/3 as z ~ 0, ~(z) ~ 1/2 as z-~ ~ (5.19) 

the solution of Eq. (5.17) can be found in explicit form 

Z = 2 k ( T -  t0)~[b + ( T -  t0)3/3] -1 +. . .  as { ~ 0 (5.20) 

z = 2 k ( T - t o ) { b  -1 +. . .  as { ~ ~o (5.21) 

The solution of Eq. (5.17) is easily obtained numerically in the general case for specified values of 
the parameters T -  to, k, b, ~. After this we determine rl from formula (5.16), s using the second equality 
of (5.11), and then the vector y ( T )  from relation (5.14). The optimal open-loop control u(t) is found 
from formula (3.10), in which we must substitute the expressions for B 1 and C1 from (5.7) and forp 
from (5.1). We finally obtain 

u(t) = r l ( t -  T) (5.22) 
2k ln l (T- t )  +b 

The quantity rl is defined by (5.16). The worst disturbance ~)(t) is given by relations (2.2) and (3.4), into 
which we must substitute expressions (5.7) for D and C1, expression (5.10) forp and expression (5.22) 
for u(t). We have 

1)(t) = kTII~II(T-0 2 
[2klTll ( Z - t) + b] z (5.23) 

We can determine the optimal trajectoryy(t) by substituting into (3.11) the expression for the integral 
(5.13). After this, using the relationsx(t) = d#(t)y(t) from (2.2) and equalities (5.5), we obtain the optimal 
trajectoryx(t) in the initial variables. In particular, we obtain (see (5.9) and (5.11)) 

x](T)  = y l ( T ) +  ( T - t o ) Y 2 ( T )  = r I (5.24) 

We obtain the minimax value J* of the functional J by substituting expressions (5.22) and (5.24) into 
relation (5.4). Expressing rl in terms ofz from formulae (5.11), we obtain 

j *  b ( T - t ° ) F 2 + Z _ ~ l n ( l + z ) ] +  
= 2 - ~  L l + z  

b 2z 2 

4k2(T- to) 2 
(5.25) 
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In the limiting cases { --+ 0 and { ~ ~ ,  using the asymptotic expansions (5.20) and (5.21), we have 

J* = ~2[l + ( T - t o ) 3 ( 3 b ) - l ] - l + . . .  as ~---)0 

j ,  =~2+ . . .  as {--> 

The quantity { is defined by formula (5.18). 
We have thus completed the solution of the minimax problem in the open-loop form. To obtain the 

solution in the closed-loop, or feedback form we carry out the constructions described at the end of 
Section 3. 

We put to = t andx ° = x in relations (5.11) and (5.16)-(5.18). We then obtain 

z+ (T- t )3(2b)-~gt (z )  = 2 k ( T - t ) b - l { ,  ~ = Ix1 +(r-t)x2)l (5.26) 

x 1 + ( T -  t)x 2 
= (5.27) 

rl 1 + ( T -  t)32b-Z~(z) 

The feedback forms of the optimal control u = fi(x, t) and of the worst disturbance a~ = ~(x, t) are 
determined as follows. Initially, using the actual values of the time t and the phase vector x one must 
solve transcendental equation (5.26) for z. Having found the unique positive solution z of this equation, 
we determine I] from formula (5.27) and substitute the value obtained into Eqs (5.22) for u and (5.23) 
for ~. We obtain the required feedback control ~(x, t) and disturbance ~(x, t). We put to = t in (5.25) 
and obtain the minimax value of the functional as a function of the actual values of t and x. 

We will consider a special case when there are no disturbances: v = 0 in (5.1). To do this we put k = 
0 in relation (5.3). In order to obtain a solution for this case, we take the limit as k ~ 0 in the relations 
obtained. We put z = k~, where ~ is a new variable. From the asymptotic expansion (5.20) we obtain, 
as k ~ 0, 

= 2 ( T -  t0)~[b + ( T -  t0)3/3] -l (5.28) 

Bearing in mind the equalityz = k~ and also (5.18) and (5.28), from expressions (5.16), (5.22) and (5.25) 
as k --+ 0 we obtain 

rl = 

o o 
X 1 + ( T -  t0)x 2 

1 + ( T - t o ) 3 ( 3 b )  -1 

u(t) = q ( t -  T) _ [x~ + (T-to)X°2]( t -  T) 
b b + ( T -  t0)3/3 

j , =  b~ 2 [-b + ( ~ 1  = 
4 ( T -  t0)2L 

+ ( r -  to)X ] 
1 + ( T -  t0)3(2b) -1 

(5.29) 

It is easy to verify that relations (5.29) define the optimal open-loop control u(t) and the minimum 
value of the functional for the optimal control problem (5.1)-(5.4) when there are no disturbances. We 
can obtain the optimal feedback control by replacing to and x0 by t and x in (5.29). 
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